Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
ACS Infect Dis ; 10(4): 1361-1369, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38447154

RESUMO

Pseudomonas aeruginosa is an antimicrobial-resistant bacterium that has no vaccine approved for human use. Additionally, it has been identified by the World Health Organization as a priority pathogen for novel vaccines and therapeutic development. We previously developed a synthetic mimic of the A-band polysaccharide tip that showed promise in terms of immunogenicity for use as a glycoconjugate vaccine. In this current manuscript, we improve upon the previous work to continue the development of this glycoconjugate vaccine. Herein, we report a higher-yielding synthesis of mimics containing a handle and a spacer that improved conjugation efficiency, resulting in better carbohydrate-to-protein ratios and also good immunogenicity of these conjugates in mice and rabbits. The data suggested that perhaps only a tetrasaccharide was required to induce an immune response capable of recognizing whole cells of P. aeruginosa.


Assuntos
Desoxiaçúcares , Mananas , Pseudomonas aeruginosa , Vacinas , Coelhos , Animais , Camundongos , Humanos , Polissacarídeos , Glicoconjugados
2.
Carbohydr Polym ; 332: 121928, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38431400

RESUMO

Published work has shown that glycoconjugate vaccines, based on truncated detoxified lipopolysaccharides from Moraxella catarrhalis attached through their reducing end to a carrier protein, gave good protection for all three serotypes A, B, and C in mice immunisation experiments. The (from the non-reducing end) truncated LPS structures were obtained from bacterial glycosyl transferase knock-out mutants and contained the de-esterified Lipid A, two Kdo residues and five glucose moieties. This work describes the chemical synthesis of the same outer Moraxella LPS structures, spacer-equipped and further truncated from the reducing end, i.e., without the Lipid A part and containing four or five glucose moieties or four glucose moieties and one Kdo residue, and their subsequent conjugation to a carrier protein via a five­carbon bifunctional spacer to form glycoconjugates. Immunisation experiments both in mice and rabbits of these gave a good antibody response, being 2-7 times that of pre-immune sera. However, the sera produced only recognized the immunizing glycan immunogens and failed to bind to native LPS or whole bacterial cells. Comparative molecular modelling of three alternative antigens shows that an additional (2 â†’ 4)-linked Kdo residue, not present in the synthetic structures, has a significant impact on the shape and volume of the molecule, with implications for antigen binding and cross-reactivity.


Assuntos
Lipopolissacarídeos , Moraxella catarrhalis , Coelhos , Animais , Camundongos , Lipopolissacarídeos/química , Lipídeo A , Anticorpos Antibacterianos , Glicoconjugados , Oligossacarídeos/química , Glucose , Proteínas de Transporte
3.
Commun Chem ; 6(1): 189, 2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37684364

RESUMO

Glycosylation is a key quality attribute that must be closely monitored for protein therapeutics. Established assays such as HILIC-Fld of released glycans and LC-MS of glycopeptides work well for glycoproteins with a few glycosylation sites but are less amenable for those with multiple glycosylation sites, resulting in complex datasets that are time consuming to generate and difficult to analyze. As part of efforts to improve preparedness for future pandemics, researchers are currently assessing where time can be saved in the vaccine development and production process. In this context, we evaluated if neutral and acidic monosaccharides analysis via HPAEC-PAD could be used as a rapid and robust alternative to LC-MS and HILIC-Fld for monitoring glycosylation between protein production batches. Using glycoengineered spike proteins we show that the HPAEC-PAD monosaccharide assays could quickly and reproducibly detect both major and minor glycosylation differences between batches. Moreover, the monosaccharide results aligned well with those obtained by HILIC-Fld and LC-MS.

4.
Biotechnol Bioeng ; 120(7): 1746-1761, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36987713

RESUMO

Protein expression from stably transfected Chinese hamster ovary (CHO) clones is an established but time-consuming method for manufacturing therapeutic recombinant proteins. The use of faster, alternative approaches, such as non-clonal stable pools, has been restricted due to lower productivity and longstanding regulatory guidelines. Recently, the performance of stable pools has improved dramatically, making them a viable option for quickly producing drug substance for GLP-toxicology and early-phase clinical trials in scenarios such as pandemics that demand rapid production timelines. Compared to stable CHO clones which can take several months to generate and characterize, stable pool development can be completed in only a few weeks. Here, we compared the productivity and product quality of trimeric SARS-CoV-2 spike protein ectodomains produced from stable CHO pools or clones. Using a set of biophysical and biochemical assays we show that product quality is very similar and that CHO pools demonstrate sufficient productivity to generate vaccine candidates for early clinical trials. Based on these data, we propose that regulatory guidelines should be updated to permit production of early clinical trial material from CHO pools to enable more rapid and cost-effective clinical evaluation of potentially life-saving vaccines.


Assuntos
COVID-19 , SARS-CoV-2 , Cricetinae , Animais , Humanos , Cricetulus , SARS-CoV-2/metabolismo , Células CHO , Anticorpos Monoclonais , Vacinas contra COVID-19/genética , COVID-19/prevenção & controle , Proteínas Recombinantes/metabolismo , Vacinas de Subunidades/genética
5.
Carbohydr Res ; 522: 108704, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36306549

RESUMO

Fusobacterium nucleatum is an anaerobic bacterium found in the human mouth where it causes periodontitis. It was also found in colorectal cancer tissues and is linked with pregnancy complications, including pre-term and stillbirths. Cell surface structures of the bacterium could be implicated in pathogenesis. Here we report the structure of the lipopolysaccharide O-chain (OPS) of three strains of F. nucleatum HM-994, HM-995, and HM-997, isolated from cancerous tissues: -3-ß-D-ManNAc4Lac-4-ß-D-Glc6OAc-3-ß-D-FucNAc4N- HM-994. -4-α-L-GalNHBuA-3-α-D-QuiNAc4NHBu-3-α-L-Rha-6-α-D-GalN- HM-995. -3-[α-L-GulNAcA-4-]-ß-D-Glc-4-ß-D-ManNAcAN-3-ß-D-FucNAc4N-3- HM-997. where HBu is 3-hydroxybutyryl, ManNAc4Lac is 4-O-(1-carboxyethyl)-2-acetamido-2-deoxy-mannose. All monosaccharides are in the pyranose form. The structures were determined using standard NMR (2D homo- and hetero-nuclear techniques), MS and chemical methods following gtypical LPS isolation and purification methods. In some cases polymeric material was further degraded in order to produce compounds that gave improved NMR spectra that were easier to be fully interpreted. Structure of the OPS from strain HM-994 was identical to the OPS from F. nucleatum strain MJR 7757 B. Structures of the OPS from HM-995 and HM-997 are novel and to our knowledge have not been previously reported and include the often observed 6-deoxy- sugars found in several F. nucleatum strains and butyrate rather than acetate modifications in the HM-995 strain. This structural knowledge adds to the ever increasing variation found in LPS O-antigen structures from F. nucleatum strain from both oral and cancerous origin and suggests that there may be a multitude of different LPS O-antigen structures elaborated by this organism that may present challenges to any serotyping efforts.


Assuntos
Fusobacterium nucleatum , Antígenos O , Gravidez , Feminino , Humanos , Antígenos O/química , Fusobacterium nucleatum/química , Lipopolissacarídeos , Composição de Bases , RNA Ribossômico 16S , Filogenia , Análise de Sequência de DNA , Monossacarídeos
6.
Carbohydr Res ; 521: 108648, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36030633

RESUMO

Fusobacterium nucleatum is an anaerobic bacterium found in the human mouth where it causes periodontitis. It was also found in colorectal cancer tissues and is linked with pregnancy complications, including pre-term and stillbirths. Cell surface structures of the bacterium could be implicated in pathogenesis. Here we report four new structures of the lipopolysaccharide O-chain (OPS) from five strains of F. nucleatum CTX47T, CC2_6JVN3, CC2_3FMU1, CC2_1JVN3, HM-996, isolated from cancerous tissues. Three of the four structures have a common sequence of hexose-diaminofucose-hexitol-phosphate in the main chain.


Assuntos
Fusobacterium nucleatum , Antígenos O , Animais , Anticorpos Monoclonais , Composição de Bases , Feminino , Fusobacterium nucleatum/química , Hexoses , Humanos , Lipopolissacarídeos , Camundongos , Antígenos O/química , Fosfatos , Filogenia , Gravidez , RNA Ribossômico 16S , Análise de Sequência de DNA , Álcoois Açúcares
7.
ACS Infect Dis ; 8(7): 1347-1355, 2022 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-35674342

RESUMO

Pseudomonas aeruginosa was added to the World Health Organization's priority pathogen list for research and development of new antibiotics in 2017. Alongside the development of new antibiotics to fight antimicrobial-resistant P. aeruginosa, vaccines would be an appealing addition to the toolbox health professionals have against this bacteria, which causes life-threatening respiratory infections. Recently, the structure of a novel immunogenic terminal carbohydrate moiety on the cell surface of P. aeruginosa was elucidated, consisting of a 3-O-methyl (1→4)-α-d-rhamnan pentasaccharide. As isolating this oligosaccharide from P. aeruginosa in sufficient amounts for producing a conjugate vaccine is challenging, herein we describe the synthesis of 3-O-methyl d-rhamnose oligosaccharide. We also report the conjugation of the synthetic pentasaccharide to human serum albumin and its resulting immunogenicity.


Assuntos
Mananas , Pseudomonas aeruginosa , Antibacterianos , Desoxiaçúcares , Humanos , Oligossacarídeos
8.
J Org Chem ; 86(3): 2184-2199, 2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-33449680

RESUMO

Pathogen-associated molecular patterns activate the immune system via pattern recognition receptors. Recently, newly discovered pathogen-associated molecular patterns, d-glycero-ß-d-mannoheptose phosphate and d-glycero-ß-d-mannoheptose 1,7-biphosphate, were shown to induce a TRAF-interacting protein with a forkhead-associated domain-dependent immune response in human embryonic kidney cells and colonic epithelial cells. Concurrently, ADP-heptose was shown to bind α-kinase 1 and activate TIFA via phosphorylation leading to an immune cascade to ultimately activate NF-κB. These pathogen-associated molecular patterns have raised interest in the pharmaceutical industry for their potential use as immunomodulators. However, little is understood about the host cell uptake of d-glycero-ß-d-mannoheptose phosphate, d-glycero-ß-d-mannoheptose 1,7-biphosphate, and ADP-heptose in vivo and derivatives of these molecules are needed to interrogate this. In this regard, herein we describe 7-O-modifications of d-glycero-ß-d-mannoheptose phosphate to produce molecular probes toward the development of a useful toolbox for biologists. A convergent strategy that involves introduction of a substituent at O-7 before alkene oxidation was investigated and proved successful in the generation of a range of molecular probes.


Assuntos
Heptoses , Fosfatos , Humanos , Fatores Imunológicos , Fosforilação
9.
Carbohydr Res ; 499: 108198, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33280822

RESUMO

Fusobacterium nucleatum is a gram-negative bacterium, part of the normal human microflora. It is associated with various health complications, including periodontitis and colorectal cancer. Its surface is covered with lipopolysaccharide, which interacts with the immune system and can be involved in various processes in health and disease conditions. Here we present the results of structural analysis of core oligosaccharides from the lipopolysaccharides of several strains of F. nucleatum. Pure compounds were isolated using mild acid hydrolysis or alkaline deacylation of the lipopolysaccharides and analyzed by NMR spectroscopy, mass-spectrometry and chemical methods. All cores analyzed had a common octasaccharide region, including five heptose residues and a non-phosphorylated 3-deoxy-d-manno-oct-2-ulosonic acid residue. The common region is substituted with different additional components specific for each strain. By structure type the F. nucleatum core is similar to that produced by Aeromonas.


Assuntos
Fusobacterium nucleatum/química , Lipopolissacarídeos/química , Oligossacarídeos/química , Configuração de Carboidratos , Espectroscopia de Ressonância Magnética , Oligossacarídeos/isolamento & purificação
10.
Can J Microbiol ; 66(9): 529-534, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32396022

RESUMO

Fusobacterium nucleatum is becoming increasingly recognised as an emerging pathogen, gaining attention as a potential factor for exacerbating colorectal cancer and is strongly linked with pregnancy complications including pre-term and still births. Little is known about the virulence factors of this organism; thus, we have initiated studies to examine the bacterium's surface glycochemistry. In an effort to characterise the surface carbohydrates of F. nucleatum, the aims of this study were to investigate the structure of the lipopolysaccharide (LPS) O-antigen of the cancer-associated isolate F. nucleatum strain CC 7/3 JVN3 C1 (hereafter C1) and to develop monoclonal antibodies (mAbs) to the LPS O-antigen that may be beneficial to the growing field of F. nucleatum research. In this study, we combined several technologies, including nuclear magnetic resonance (NMR) spectroscopy, to elucidate the structure of the LPS O-antigen repeat unit as -[-4-ß-Gal-3-α-FucNAc4N-4-α-NeuNAc-]-. We have previously identified this structure as the LPS O-antigen repeat unit from strain 10953. In this present study, we developed a mAb to the C1 LPS O-antigen and confirmed the mAbs cross-reactivity to the 10953 strain, thus confirming the structural identity.


Assuntos
Anticorpos Antibacterianos/imunologia , Anticorpos Monoclonais/imunologia , Fusobacterium nucleatum/imunologia , Antígenos O/química , Antígenos O/imunologia , Animais , Antígenos de Bactérias/imunologia , Reações Cruzadas , Ensaio de Imunoadsorção Enzimática , Espectroscopia de Ressonância Magnética , Camundongos , Camundongos Endogâmicos BALB C , Sorotipagem , Fatores de Virulência
11.
ACS Chem Biol ; 15(4): 1050-1058, 2020 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-32191024

RESUMO

Clostridiodes (Clostridium) difficile is an anaerobic Gram-positive, spore-forming nosocomial, gastrointestinal pathogen causing C. difficile-associated disease with symptoms ranging from mild cases of antibiotic-associated diarrhea to fatal pseudomembranous colitis. We developed murine monoclonal antibodies (mAbs) specific for a conserved cell surface antigen, lipoteichoic acid (LTA)of C. difficile. The mAbs were characterized in terms of their thermal stability, solubility, and their binding to LTA by surface plasmon resonance and competitive ELISA. Synthetic LTA molecules were prepared in order to better define the minimum epitope required to mimic the natural antigen, and three repeat units of the polymer were required for optimal recognition. One of the murine mAbs was chimerized with human constant region domains and was found to recognize the target antigen identically to the mouse version. These mAbs may be useful as therapeutics (standalone, in conjunction with known antitoxin approaches, or as delivery vehicles for antibody drug conjugates targeting the bacterium), as diagnostic agents, and in infection control applications.


Assuntos
Anticorpos Monoclonais Murinos/imunologia , Clostridioides difficile/imunologia , Lipopolissacarídeos/imunologia , Ácidos Teicoicos/imunologia , Sequência de Aminoácidos , Animais , Anticorpos Monoclonais Murinos/química , Clostridioides difficile/química , Humanos , Camundongos , Estabilidade Proteica
12.
Carbohydr Res ; 468: 69-72, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30153554

RESUMO

Fusobacterium nucleatum is an anaerobic bacterium found in the human mouth where it causes periodontitis. It was also found in colorectal cancer tissues and is linked with pregnancy complications, including pre-term and still births. Cell surface structures of the bacterium could be implicated in pathogenesis. Here we report the following structure of the lipopolysaccharide O-chain of a spontaneous streptomycin resistant (SmR) mutant of F. nucleatum strain ATCC 23726: -4-ß-Non5Am7Ac-4-ß-d-GlcNAcyl3NFoAN-3-ß-d-FucNAc4N- where GlcNAcyl3NFoAN indicates 2,3-diamino-2,3-dideoxyglucuronic acid amide with Fo at N-3 being formyl and Acyl at N-2 being propanoyl (∼70%) or butanoyl (∼30%); Non5Am7Ac indicates 7-acetamido-5-acetimidoylamino-3,5,7,9-tetradeoxy-l-gluco-non-2-ulosonic acid presumably having the d-glycero-l-gluco configuration. To our knowledge, no l-gluco isomer of higher sugars of this class as well as no N-propanoyl or N-butanoyl group have so far been found in bacterial polysaccharides.


Assuntos
Fusobacterium nucleatum/química , Glucose/química , Antígenos O/química , Isomerismo
13.
Carbohydr Res ; 463: 37-39, 2018 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-29753950

RESUMO

Fusobacterium nucleatum is an anaerobic bacterium found in the human mouth where it causes periodontitis. It was also found in colorectal cancer tissues and is linked with pregnancy complications, including pre-term and still births. Cell surface structures of the bacterium could be implicated in pathogenesis. Here we report the following structure of the lipopolysaccharide O-chain of F. nucleatum strain MJR 7757 B:where Lac is (R)-1-carboxyethyl (lactic acid residue); all monosaccharides are in the pyranose form. ManNAc4Lac, analogue of N-acetylmuramic acid, is found for the first time in natural sources.


Assuntos
Fusobacterium nucleatum/metabolismo , Antígenos O/química , Fusobacterium nucleatum/química , Estrutura Molecular , Ressonância Magnética Nuclear Biomolecular
14.
Infect Immun ; 86(8)2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29844237

RESUMO

Sialylation of lacto-N-neotetraose (LNnT) extending from heptose I (HepI) of gonococcal lipooligosaccharide (LOS) contributes to pathogenesis. Previously, gonococcal LOS sialyltransterase (Lst) was shown to sialylate LOS in Triton X-100 extracts of strain 15253, which expresses lactose from both HepI and HepII, the minimal structure required for monoclonal antibody (MAb) 2C7 binding. Ongoing work has shown that growth of 15253 in cytidine monophospho-N-acetylneuraminic acid (CMP-Neu5Ac)-containing medium enables binding to CD33/Siglec-3, a cell surface receptor that binds sialic acid, suggesting that lactose termini on LOSs of intact gonococci can be sialylated. Neu5Ac was detected on LOSs of strains 15253 and an MS11 mutant with lactose only from HepI and HepII by mass spectrometry; deleting HepII lactose rendered Neu5Ac undetectable. Resistance of HepII lactose Neu5Ac to desialylation by α2-3-specific neuraminidase suggested an α2-6 linkage. Although not associated with increased factor H binding, HepII lactose sialylation inhibited complement C3 deposition on gonococci. Strain 15253 mutants that lacked Lst or HepII lactose were significantly attenuated in mice, confirming the importance of HepII Neu5Ac in virulence. All 75 minimally passaged clinical isolates from Nanjing, China, expressed HepII lactose, evidenced by reactivity with MAb 2C7; MAb 2C7 was bactericidal against the first 62 (of 75) isolates that had been collected sequentially and were sialylated before testing. MAb 2C7 effectively attenuated 15253 vaginal colonization in mice. In conclusion, this novel sialylation site could explain the ubiquity of gonococcal HepII lactose in vivo Our findings reinforce the candidacy of the 2C7 epitope as a vaccine antigen and MAb 2C7 as an immunotherapeutic antibody.


Assuntos
Gonorreia/microbiologia , Heptoses/metabolismo , Lactose/metabolismo , Lipopolissacarídeos/metabolismo , Ácido N-Acetilneuramínico/metabolismo , Neisseria gonorrhoeae/metabolismo , Neisseria gonorrhoeae/patogenicidade , Adulto , Animais , Anticorpos Antibacterianos/imunologia , Anticorpos Antibacterianos/metabolismo , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/metabolismo , China , Modelos Animais de Doenças , Feminino , Voluntários Saudáveis , Humanos , Lipopolissacarídeos/química , Masculino , Espectrometria de Massas , Camundongos , Viabilidade Microbiana/efeitos dos fármacos , Ácido N-Acetilneuramínico/análise , Neisseria gonorrhoeae/química , Neisseria gonorrhoeae/isolamento & purificação
15.
Glycoconj J ; 35(1): 53-64, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28971282

RESUMO

Dental caries remains a major health issue and the Gram-positive bacterium Streptococcus mutans is considered as the major pathogen causing caries. More recently, S. mutans has been recognised as a cause of endocarditis, ulcerative colitis and fatty acid liver disease along with the likelihood of increased cerebral hemorrhage following a stroke if S. mutans is present systemically. We initiated this study to examine the vaccine candidacy of the serotype specific polysaccharides elaborated by S. mutans. We have confirmed the carbohydrate structures for the serotype specific rhamnan containing polysaccharides from serotypes c, f and k. We have prepared glycoconjugate vaccines using the rhamnan containing polymers from serotypes f and k and immunised mice and rabbits. We consistently obtained a robust immune response to the glycoconjugates with cross-reactivity consistent with the structural similarities of the polymers from the different serotypes. We developed an opsonophagocytic assay which illustrated the ability of the post-immune sera to facilitate opsonophagocytic killing of the homologous and heterologous serotypes at titers consistent with the structural homologies. We conclude that glycoconjugates of the rhamnan polymers of S. mutans are a potential vaccine candidate to target dental caries and other sequelae following the escape of S. mutans from the oral cavity.


Assuntos
Desoxiaçúcares/imunologia , Glicoconjugados/imunologia , Mananas/imunologia , Streptococcus mutans/imunologia , Animais , Linhagem Celular Tumoral , Desoxiaçúcares/química , Feminino , Glicoconjugados/química , Humanos , Mananas/química , Camundongos , Camundongos Endogâmicos BALB C , Coelhos , Sorogrupo , Streptococcus mutans/química , Streptococcus mutans/genética , Vacinas Conjugadas/imunologia
16.
Vaccine ; 35(45): 6129-6136, 2017 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-28951087

RESUMO

After the introduction of the glycoconjugate vaccine based upon the capsular polysaccharide ofHaemophilus influenzaetype b in the mid 1980s there was a remarkable decrease in the number of invasive cases reported for this organism. Since the 1990s several groups have observed the emergence ofHaemophilus influenzaetype a (Hia), especially in indigenous communities in the northern regions of Canada and Alaska, to a stage where a solution is warranted to prevent further unnecessary deaths due to this pathogen. A glycoconjugate vaccine solution based upon the type a capsular polysaccharide (CPS) was investigated pre-clinically in an effort to illustrate the proof of concept for this approach. In this study we describe the growth of Hia and the isolation, purification and conjugation of the CPS to several carrier proteins. The resulting glycoconjugates were immunised in mice and rabbits provoking sera that facilitated bactericidal killing against all type a strains that we tested. This study has illustrated the pre-clinical proof of concept of a glycoconjugate vaccine based on the CPS of Hia asa solution to this emerging disease.


Assuntos
Cápsulas Bacterianas/imunologia , Glicoconjugados/imunologia , Infecções por Haemophilus/imunologia , Infecções por Haemophilus/prevenção & controle , Vacinas Anti-Haemophilus/imunologia , Haemophilus influenzae/imunologia , Polissacarídeos Bacterianos/imunologia , Alaska , Animais , Canadá , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Saúde Pública , Coelhos , Sorotipagem/métodos , Vacinação/métodos
17.
Infect Immun ; 85(11)2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28874446

RESUMO

The lipopolysaccharide (LPS) produced by the Gram-negative bacterial pathogen Pasteurella multocida has phosphoethanolamine (PEtn) residues attached to lipid A, 3-deoxy-d-manno-octulosonic acid (Kdo), heptose, and galactose. In this report, we show that PEtn is transferred to lipid A by the P. multocida EptA homologue, PetL, and is transferred to galactose by a novel PEtn transferase that is unique to P. multocida called PetG. Transcriptomic analyses indicated that petL expression was positively regulated by the global regulator Fis and negatively regulated by an Hfq-dependent small RNA. Importantly, we have identified a novel PEtn transferase called PetK that is responsible for PEtn addition to the single Kdo molecule (Kdo1), directly linked to lipid A in the P. multocida glycoform A LPS. In vitro assays showed that the presence of a functional petL and petK, and therefore the presence of PEtn on lipid A and Kdo1, was essential for resistance to the cationic, antimicrobial peptide cathelicidin-2. The importance of PEtn on Kdo1 and the identification of the transferase responsible for this addition have not previously been shown. Phylogenetic analysis revealed that PetK is the first representative of a new family of predicted PEtn transferases. The PetK family consists of uncharacterized proteins from a range of Gram-negative bacteria that produce LPS glycoforms with only one Kdo molecule, including pathogenic species within the genera Vibrio, Bordetella, and Haemophilus We predict that many of these bacteria will require the addition of PEtn to Kdo for maximum protection against host antimicrobial peptides.


Assuntos
Proteínas de Bactérias/genética , Proteínas Sanguíneas/toxicidade , Farmacorresistência Bacteriana/genética , Etanolaminofosfotransferase/genética , Regulação Bacteriana da Expressão Gênica , Pasteurella multocida/genética , Pasteurella multocida/patogenicidade , Precursores de Proteínas/toxicidade , Animais , Proteínas de Bactérias/metabolismo , Galinhas , Biologia Computacional , Etanolaminofosfotransferase/metabolismo , Etanolaminas/química , Etanolaminas/metabolismo , Fator Proteico para Inversão de Estimulação/genética , Fator Proteico para Inversão de Estimulação/metabolismo , Galactose/química , Galactose/metabolismo , Perfilação da Expressão Gênica , Heptoses/química , Heptoses/metabolismo , Isoenzimas , Lipídeo A/química , Lipídeo A/metabolismo , Mutação , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Infecções por Pasteurella/microbiologia , Infecções por Pasteurella/patologia , Pasteurella multocida/classificação , Pasteurella multocida/efeitos dos fármacos , Filogenia , Açúcares Ácidos/química , Açúcares Ácidos/metabolismo , Transcriptoma
18.
Carbohydr Res ; 448: 115-117, 2017 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-28651243

RESUMO

Fusobacterium nucleatum is an anaerobic bacterium found in the human mouth where it causes periodontitis. It was also found in colorectal cancer tissues and is linked with pregnancy complications, including pre-term and still births. Cell surface structures of the bacterium could be implicated in pathogenesis. Here we report the following structure of the lipopolysaccharide O-chain of F. nucleatum strain 12230: -6-α-d-Glc-4-ß-d-GlcNHBu3NHBuA-3-ß-d-QuiNAc4NABu- where ABu and HBu indicate (R)-3-aminobutanoyl and (R)-3-hydroxybutanoyl, respectively; all monosaccharides are in the pyranose form.


Assuntos
Fusobacterium nucleatum/química , Antígenos O/química , Sequência de Carboidratos
19.
Carbohydr Res ; 440-441: 38-42, 2017 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-28199859

RESUMO

Fusobacterium nucleatum is an anaerobic bacterium found in the human mouth where it causes periodontitis. Recently, it has been gaining attention as a potential causative agent for colorectal cancer and is strongly linked with pregnancy complications including pre-term and still births. Little is known about virulence factors of this organism and thus we have initiated studies to examine the bacterial surface glycochemistry. Consistent with a recent paper suggesting that F. nucleatum strain 10593 can synthesize sialic acid, a staining technique identified sialic acid on the bacterial surface. We isolated lipopolysaccharide from this F. nucleatum strain and performed structural analysis on the O-antigen. Our studies identified a trisaccharide repeating unit of the O-antigen with the following structure: -[→4)-α-Neup5Ac-(2 â†’ 4)-ß-d-Galp-(1 â†’ 3)-α-d-FucpNAc4NAc-(1-]- where Ac indicates 4-N-acetylation of ∼30% FucNAc4N residues. The presence of sialic acid as a constituent of the O-antigen is consistent with recent data identifying de novo sialic acid synthesis in this strain.


Assuntos
Fusobacterium nucleatum/química , Ácido N-Acetilneuramínico/química , Antígenos O/química , Trissacarídeos/química , Configuração de Carboidratos , Sequência de Carboidratos , Espectroscopia de Ressonância Magnética , Ácido N-Acetilneuramínico/isolamento & purificação , Antígenos O/isolamento & purificação , Coloração e Rotulagem/métodos , Trissacarídeos/isolamento & purificação
20.
Carbohydr Res ; 440-441: 10-15, 2017 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-28135570

RESUMO

Fusobacterium nucleatum is an anaerobic bacterium found in the human mouth where it causes periodontitis. Recently, it has been gaining attention as a potential causative agent for colorectal cancer and is strongly linked with pregnancy complications including pre-term and still births. Little is known about the virulence factors of this organism, and thus we have initiated studies to examine the bacterium's surface glycochemistry. We isolated lipopolysaccharide (LPS) from F. nucleatum strain 25586 and purified and performed structural analysis on the O-antigen polysaccharide. The polysaccharide contained two novel sugars, 2-acetamido-2,6-dideoxy-l-altrose (l-6dAltNAc) and a 5-acetimidoylamino-3,5,9-trideoxy-gluco-non-2-ulosonic acid (Non5Am), which was tentatively assigned the l-glycero-l-gluco configuration. The polysaccharide was found to have a trisaccharide repeating unit, which is phosphorylated with phosphocholine (PCho), and the following structure was established: -[-4-ß-Nonp5Am-4-α-l-6dAltpNAc3PCho-3-ß-d-QuipNAc-]- We propose the trivial name 'fusaminic acid' for the novel nonulosonic acid. It is the first occurrence of a 9-deoxynonulosonic acid with a hydroxyl group at C-7, which is occupied by an amino group in all monosaccharides of this class described so far.


Assuntos
Fusobacterium nucleatum/química , Hexoses/química , Antígenos O/química , Açúcares Ácidos/química , Configuração de Carboidratos , Sequência de Carboidratos , Hexoses/isolamento & purificação , Espectroscopia de Ressonância Magnética , Antígenos O/isolamento & purificação , Fosforilação , Fosforilcolina/química , Açúcares Ácidos/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...